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LElTER TO THE EDITOR 

On the relationship between the stochastic and deterministic 
approach to particle coagulation-asymptotic expansion 
of < N )  

S Simons 
School of Mathematical Sciences, Queen Mary and Westfield College, University of 
London, Mile End Road, London El 4NS, U K  

Received I I  June 1990, in final form 25 October 1990 

Abstract. Consideration is given to the solution of the stochastic equation governing the 
coagulation o l  panicles far the case of a sire-independent coagulation probability. The 
corresponding expression lor the expectation value of panicle number (N) is developed 
in the form of an asymptotic series valid for N >> 1, the fin1 term being the solution of the 
relevant deterministic equation. The next term, giving the first-order correction to this 
result, is obtained explicitly, together with an estimate o f  the corresponding standard 
deviation of N. 

Two approaches have conventionally been used for the quantitative discussion of 
coagulation phenomena. The first, pioneered by Smoluchowski assumes a spatially 
homogeneous distribution of particles within an infinite volume. The distribution is 
characterized by the total number of particles per unit volume, N, and for the case of 
the coagulation probability between two particles being independent of their size (a 
reasonable approximation for Brownian coagulation), Smoluchowski showed that N 
satisfies the equation 

dN/dt  = -fQN2 (1) 

where Q is the relevant coagulation kernel. 
The second approach to coagulation has been to consider a finite number of particles 

N distributed homogeneously throughout a finite volume V .  A proper treatment of 
this situation requires a stochastic approach, leading to a calculation of the expectation 
value of Z((Z)), where Z is any physical quantity defined by the particle coagulation. 
Now if both N and V tend to infinity, maintaining the ratio N =  N /  V constant, it is 
to be expected that the limiting value of (2) should correspond to the solution of the 
deterministic equation ( l ) ,  and a discussion of this for the case where Z is the time 
for N to change by a specified amount has been given recently by Simons (1990). Of 
probably greater interest is the situation where Z is taken to be N, considered as a 
function of r, and a proof that the limiting value of ( N ( 1 ) )  does indeed correspond to 
the solution of equation (1) has been provided by Hendriks er al(l985).  The purpose 
of the present communication is to supplement this latter work by showing how the 
approach of Hendriks may be extended to develop an asymptotic expansion of (N( 1) ) .  
valid for N >> 1. The leading term in this expansion corresponds to the solution of 
equation (I), while the next term (required for finite V) gives the first-order correction 
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to this deterministic result. In addition we evaluate the leading term in v, the standard 
deviation of N ( f ) .  The approach we employ is a relatively simple one and allows 
comparison with some of the results obtained by Merkulovich and Stepanov (1986). 
These authors tackled coagulation systems of greater generality than ours using different 
and more complex techniques. For the situation we are concerned with, our results 
are identical with theirs. 

We consider an initial assembly of n particles lying within a volume V and 
coagulating together with probability independent of particle size. We non-dimension- 
alize the time I by letting T =tot/ V, and define P (  N,  T) as the probability of there 
existing N particles ( N  < n )  after time T. Following the approach of Van Kampen 
(1981) the master equation for P then takes the form 

JP(N,  T ) / J T  = - N ( N -  1 ) P (  N,  T ) +  N (  N +  l ) P (  N +  1, T )  ( N < n )  (2) 

with initial condition P( N, 0) = 0. The approach of Hendriks ef a/ (1985) then yields 
the solution of equation (2) in the form 

where 

( - l )P-Nn ! ( n  - 1 )  ! ( p  + N -2)! (2p - 1 )  
N ! ( N - l ) ! ( p - N ) ! ( n - p ) ! ( n + p - l ) ! '  A, = 

It follows immediately from equations (3) that 

on making use of the result that 

(-l)P-"(p+ N - Z ) !  i = 1  
N = I  [ (N- l ) ! ] ' (p-N)!  

(obtained by equating coefficients of xV-'  on both sides of the identity ( I  -x )"- ' ( l -  

In order to develop our asymptotic expansion for ( N ) ,  we now proceed to employ 
the Euler-Maclaurin formula (Abramowitz and Stegun 1965), which transforms the 
summation in (4) into an integral, together with correction terms. In order to make a 
change of variable in this integral (as will be explained later) we wish to maintain the 
factor (Zp - 1 )  positive throughout the integration interval, and we therefore begin by 
separating off the contribution to (N)  arising from p = I .  We also separate off the terms 
arising from p = n - 1 ,  n so that Stirling's formula may be subsequently used for all 
expressions of the form z!  appearing in the integral, with z>O.  We therefore write 

x)-P=(l-x)- ' ) .  
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where X is the contribution to ( N )  arising from p = n - 1 and n. It is readily shown 
that X s n'/4" which tends to zero as n +CO more rapidly than n-' for finite s, and 
thus X may be neglected in developing our asymptotic expansion. Letting g(p)  denote 
the summand in equation (6 ) ,  we now apply the Euler-Maclaurin formula, which gives 

1 n - l  

( N ) = l + / ,  g ( ~ ) d p - 2 [ g ( l ) + g ( n - l ) l  

(7) 
1 1 
12 120 

-- [g'( 1) - g' (n  - I)] +- [g"'( 1) - g"'( n - I)] + . . . 

and it is readily shown that the terms involving g and its derivatives at p = n - 1 may 
be neglected. 

To progress further we now use the Stirling approximation in the form 

1 1 
2 12x 

I n x - x + - l n ( 2 ~ ) + -  

to represent the factorials in the integrand in (7). That is, we let 

n ! ( n  - l ) !  
( n  -p)  ! ( n  +p - l ) !  

F =  

leading to 

In F =  ( n  -:) in( 1 -:) - ( n  -p +:) in( 1 -R) 

We now expand the logarithmic terms as power series in n - ' ,  retaining all terms in F 
up to n-'. This yields 

I n F =  -(p'-p) -(P2 -P)2 
n 6n'  

with the term in n-' vanishing identically. This, in turn, gives 

g ( p ) = ( 2 p - l ) e x p  [ - (p2-p)  ( T + -  ;) - 

(9) 

To evaluate the integral in equation (7), we now let x=(T+n- ' ) (p ' -p) ,  when 

where X - n. Since the integrand behaves as e-' at the upper limit, we may take this 
upper limit to be 00. Further since we are looking for an asymptotic series in  V-' for 
(N), we can express equation (11) in the form 
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these two terms being respectively proportional to V and Vo. Finally, we consider the 
terms in equation (7)  involving g( l ) ,  g'(1) etc. The highest power of V appearing in 
these terms is v", and if we neglect powers of V lower than this, we have g ( l )  = 1 ,  
g'( 1 )  = 2, g'"'( 1 )  = 0 for q a 2. Hence we obtain from equation (7) 

XT -.., .ha ~ ~ t . . - i ~ i ~ + : ~ ~ " . . ~ t i - ~  r-.+h- .-.mrnnt cit..ntinn io A N/I--  - 

N(T)  = ( T +  n-')-', and thus equation (13a) may be equivalently expressed as 
..,:+L r-~..+:-.. 

L."", L l l C  "b,b I.,,.... ",.u-.#"YL.".. 1". ,..U y'.'"'...>.."'.L.Y.. ..,"., , U 1 - N', ",,l,D"IU,,",, 

( N ) =  N+' [1 - ( : ) ' ]  3 

The term f[ 1 - (N/n)'] is the first-order correction to N and it is clear that this is 

N << n. Since the result (13) corresponds to the first two terms of an asymptotic series 
it will be valid for N >> 1, corresponding to n >> I and T<< 1 .  

We now calculate the standard deviation of N, and begin this by multiplying both 
sides of equation (2) by N and then summing over all values of N. This yields 

d(N)/dT= -(N')+(N). (14) 

ini!i2!!y zero when .h! = E (2s expcc!ed! and incre2s.s !e a marimllm v2!ue of f for 

Hence 

( N 2 )  = (N) -d( N)/dT 

!??Eking ..se ofcq.22tion ( I h )  2nd rctcining !PK!?S progor?ian2! to Y 2  and v !?alining 
the leading term in U then gives 

U = ( ( N ~ ) - ( N ) ~ ) " ~  

vaiid ior N >> i. As expected this resuit corresponds to U = 0 initiaiiy (when N = n ) ,  
and also U -  

Finally we make the point (referred to earlier) that equations (13 )  and (16) are in 
exact agreement with the corresponding results of Merkulovich and Stepanov (1986) 
as expressed (albeit in a less concise fashion) in equation (24) of their paper. 

for N K  n. 

! sho.;!d !ike :o take this. opport-city of cxp:essi3g "j thaxks :o Dn:d Ba!ding For 
several helpful discussions on stochastic processes, and to the referee for comments 
which have led to an improvement both in content and presentation. 
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